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A REAL VARIABLE RESTATEMENT 
OF RIEMANN'S HYPOTHESIS 

BY 

H. BERCOVICF AND C. FOIAS * 

ABSTRACT 

We show that Riemann's hypothesis is related to the equality of certain 
interesting subspaces of L p (0, 1). Our results generalize an earlier theorem of 
A. Beurling [2]. 

Let C denote the linear space generated by the functions {po :0 < 0 _-< 1} 

defined by 

po(X) = p ( O / x ) -  Op(1/x), 0 < x <-_ 1, 

where p ( x )  = x - [x] represents the fractional part of the real number x. If C p 

denotes the closure of C in LP(0, 1), we have the following result due to A. 

Beurling [2]. 

THEOREM A. The R i e m a n n  Zeta-Junct ion has no zeros s with Re s > 1/p if 

and  only if  C p = LP(0, 1). 

Beurling's original proof used a theorem on the existence in Lq(0,1) of 

characters of the multiplicative semigroup (0, 1), orthogonal to certain subspaces 

of LP(0,1) (1/q + 1/p = 1). 

In the present paper we give an alternative approach to Beurling's theorem, 

using the harmonic analysis of the semigroup { V2(t) : t >= 0} of unitary operators 

on L2(0, 1), defined by 

(V2( t ) f ) ( x )  = e ' /2f(e 'x) ,  x E [0, e- ' ] ,  

=0 ,  x ~ (e-', 1]. 
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This approach provides a better understanding of the infinite dimensional 

geometry involved in the study of Riemann's hypothesis. Our analysis also yields 

alternative formulations, worth studying, of the problem. 

For example, let Z denote the linear space of all functions f that can be 

represented as 

f ( x )  = ~ { F ( 2 k x ) -  F((ek - 1)x)} 
k = l  

for some continuous function F of bounded variation on [0,oo), such that 

F(x)  -- 0 for x _-> 1. If Z p denotes the closure of Z in LP(0, 1), the following 

theorem is a particular case of our results (cf. Section 3 below). 

THEOREM B. For 1 <-_ p <= 2 the Riemann Zeta-function has no zeros s with 

Re s > 1/p if and only if Z p = Z '  fq L p (0, 1). 

The fact that the spaces Z p might play a more basic role, in connection with 

Riemann's  hypothesis, than Beurling's spaces C p was suggested to us by 

Professor Max Zorn to whom (as well as to Professor James P. Williams) we are 

indebted for our interest in Beurling's paper [2]. Therefore,  we suggest to call Z p 

the Zorn subspace of L p (0, 1) and we hope that Theorem B shows that these 

Zorn subspaces are interesting objects of real analysis. 

1. Preliminaries 

Let {T(t) : t > 0} be a strongly continuous semigroup of isometries acting on a 

Hilbert space H. It is then known (cf. [7], Ch. III) that there exists an isometry T, 

called the cogenerator of { T ( t ) : t  =>0}, such that 

T(t)  = exp [t(T + I ) (T  - I)- ' ] ,  t => 0. 

Moreover,  if A is the generator of {T(t) :  t =>0}, i.e., 

Ah = lim [T(t)h - h]/t 
l ~ ( ) +  

for all h in H for which the limit exists, then 

T = / +2 (A  - I )  -t. 

It easily follows from these formulas that a closed subspace M of H is invariant 

under T if and only if it is invariant under T(t)  for all t _-> 0. 

For every measurable function f on [0, 1] we set 
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LEMMA 1.1. 

( V(t) f )(x  ) = e 'af(e 'x), 

= 0, 

For f E  L p (0, 1) we have 

x E[0,  e '], 

x E ( e  ',1). 

Moreover, the restrictions V2(t) of V(t)  to L-'(0, 1) form a strongly continuous 
semigroup of isometrics on L ~- (0, 1). 

PROOF. The estimate of II V(t)fll. is a straightforward computation. That 

{Vdt):t>=O} is strongly continuous follows from the fact that V2(t) is an 

isometry combined with the fact that Vff t ) f  converges uniformly to f as t -+ 0 + 

if f is cont inuouswith compact support in [0,1). 

Let H 2 denote, as usual, the Hilbert space of functions f ( A ) =  E~=oa3t ~ 

defined for la I< 1, and with finite norm 

On H 2 consider the semigroup of isomctries {S( t ) : t  => 0} with cogenerator S 

given by the formulas 

/ a + l )  
(S(t)f)(~t) = exp ~t~-7~_ 1 [ (a) ,  

( s f ) ( x )  = x f ( x ) ,  I a I < 1. 

LEMMA 1.2. There exists a unitary operator . ~ :L2(0 ,1 ) - -+H -" such that 
S(t)o ~ = ~:V=(t), t >-_ O, and S ~  = ~V2. 

PROOF. We obviously have I"],~.,j V2(t)L2(0,1)={O} and this implies that 

V2(t) and V2 are completely nonunitary isometrics, i.e., forward shifts (cf. [7], 

Ch. III). Moreover, V,~o V2(t)l = L2(0, 1), where 1 denotes the constant func- 

tion identically equal to 1. Indeed, the function e-'aV~(t)l coincides with the 

characteristic function of [0, e- ' ]  and these characteristic functions generate 

L2(0, 1). Thus we also have V,~0 V~I = Lz(0,1) so that V2 has a cyclic vector 

and hence it is a forward shift of multiplicity one. Since every forward shift of 

multiplicity one is unitarily equivalent to S, we infer the existence of a unitary 

operator ~ : L  2 (0, 1)---~ H 2 such that S ~  = ~V2. The relations S(t)gT = ~V=(t) 

follow now from the formula relating a semigroup with its cogenerator. 

In order to find an explicit formula for if, we introduce the functions p~ in H 2 
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defined for I/z I<1 by p . ( A ) =  ( 1 - f i A )  -~, IA I<1. We have ( f ,p . )  = f(/x) and 
S*p.  = ~p.  for f in H 2 and I/~ I < 1 so that 

S(t)*p.  = exp ~t/2 _ 1 J p"" 

Also note that p,~ is antianalytic in /z and II P~ I t-  2 = (1 - I ~ 12) -''2 

LEMMA 1.3. I f  ~ is the unitary operator from Lemma 1.2, there exists a 

complex constant a, ] a I = 1, such that 

(~/)(~.L) = ~ .--~- f01 f(X)X-'/2+('+")/('-")dx, 

f ~ L:(0,1) ,  Itz I<  1. 

We have 

(1.1) 

PROOF. 

( ~ / ) ( ~ )  = (~/, p~) --  if ,  ~*p~)  

and therefore it will suffice to show that 

Ol ~ x-l12+(l+t2)l(1-12 ) 
(~*p~ )(x ) = 1 - I~ 

for some a independent of/z, l a I = 1. The relations V:( t)*~* = ~*S( t )*  imply 

that 

(1.2) V2( t )* (~*p~)=exp \  f i - 1  (g**P")' t>=O" 

The adjoint V2(t)* is given by 

(V2(t)*f)(x) = e-"2f(e-'x),  x E [0, 1] 

so that (1.2) reduces to 

(1.3) e - " 2 ( ~ * p , ) ( e - ' x ) = e x p ( t ~ _ l l ) ( ~ * p , ~ ) ( x )  

and this easily implies 

(,.~*p,, )(x  ) = c,,x-'/2+(1+:'/('-:') 

where c~ does not depend on x (formally we set x = 1 and e- '  = y in (1.3) toge t  

c,, = ( ~ * p . )  (1); this formal computation is easy to justify). 

A direct computation shows that 
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II x -''~-+''+~,''' ~'112 = 11 -~2 ~ I(1 _ 1~ i=)-,,= 

s o  that the equality II ~*P~ I[ = PI P~ II = (1 - I  ~ r) 1/2 gives 

C ~ = a _  ~ I ~ . 1 : 1 .  

We use now the fact that ~ * p .  is antianalytic in /x so that a .  must be 

antianalytic in/z. This clearly implies that a~ does not depend on/z.  The lemma 

is proved. 

Note that /z ---~ (l + /z ) / ( 1 -  /x ) maps the unit disc D onto the halfplane 

{h : Re h > 0} so that the formula s = (1 +/z)/(1 - / z )  + �89 establishes a conformal 

correspondence between the unit disc D = { / z : [ / z [ <  1} and the halfplane 

{s : R e s  >�89 Since s +�89 = 2 / ( 1 -  /z ) formula (1.1)can be rewritten as 

I ' 1+/~+~.  
(s +�89 f (x)x" 'dx, s = (1.4) (,~f)(/z) = ~ , 1 - / x  

For the functions po(x) = p ( O / x ) - O p ( 1 / x ) ,  defined in the introduction, a 

direct calculation shows that 

a + � 8 9  ~ 1 + ~  , (1.5) (~oo)(u) = - ~ ( s  ~(s), s = +~ 
s 1 - t z  

for Re s > 1 (cf. [2] and [3]). Formula (1.5) extends by analytic continuation to 

the entire domain {s : Re s > �89 

Observe that (1.5) is (equivalent to) the basic formula in Beurling's paper [2]. 

REMARK 1.4. The following explicit formula for the cogenerator V2 of the 

semigroup { Vz(t) : t >-_ 0} can be easily obtained by using (1.1) and the relation 

S ~  = ~V2: 

fx I (1.6) (V2f ) (x )  = f ( x ) -  2x'/2y-3/2f(y)dy, f ~ L-" (0, 1). 

Formula (1.6)can also be obtained directly, from the definition of cogenerators. 

2. The main result 

We denote by Zo the linear space generated by the functions { V(t)oo : t >= 0}. 

Also, following Beurling, we denote by C the linear space generated by 

{po : 0 < 0 < 1}. The formula 
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e t/2 t V(t)pe = poe- - Oe'/2pe -' 

shows that C is invariant under V(t)  so that Zo C C for 0 < 0 < 1. Denote by ZPo 

[resp. C P ] the closure of Zo [resp. C] in L p (0, 1) and note that the spaces Z~and 

C p are invariant under V(t)  for all t _-> O. 

In what follows, we will use the notation 

Ao = { s : R e s > ~ a n d  ~ ( s )=0}U s = 1 + ~  :k ~Z\{0} . 

For s in Ao with ~(s) = 0, we denote by n(s) the multiplicity of s as zero of ~'. 

For s = 1 +2klri / logO we set n ( s ) =  1; this makes sense since by a celebrated 

theorem of Hadamard and de la Vall6e-Poussin (cf., e.g., [81) ~ ( s ) # 0  for 

Res  = 1. 

If g is an analytic function of s, the notation 

e , ( s )  = O ( ( s  - So) n) 

will indicate that g has a zero of order at least n at So. 

PROPOSITION 2.1. For O< 0 < 1 we have 

{ r E  L2(0, 1): fo' [(x )x '- '  dx = O((s - So) "%)) for all So in Ao} . Z~=  

PROOF. The subspace Z~ of L2(0,1) is invariant under V2(t), t->0, and 

therefore under V2. The relation Sff = ~V2 shows that ~Z~ is invariant under S. 

By a theorem of Beurling [1] there exists an inner function me in H ~ such that 

~ Z ~  = moll  2. Now, Z~ is the smallest invariant subspace for V2 containing the 

function p+ and consequently ~:Z~ is the smallest invariant subspace for S 

containing ~po. It follows that rne coincides with the inner factor of ~pe. Formula 

(1.5) clearly shows that ~pe is analytic across the arc { / z : [ / ~ [ =  1, p+# 1}. 

Indeed, this follows from the fact that if(s) is analytic across the line Re s = �89 

Then a simple property of inner functions (cf. theorem II. 6.3 from [5]) implies 

that m+ is also analytic across {/z" I/z I=  1,/z # 1} and hence it has the form 

mo(tz) = Be(/z)exp \ /z - 1 ) 

where Be is a Blaschke product and r=>0. If r # 0 ,  it would follow that 

lim, t, (~pe)(/z) = 0, or we have 

�89 s o  , ,  s +  
lim (,~pe)(/z) = lim ~ s 
/-~ T 1 s - + ~  
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We conclude that r -- 0 and me is the Blaschke product formed with the zeros of 

~p0. The zeros of ~po are {p. : s = (1 +/x)/(1 - / z )  + �89 E Ao} and the multiplicity 

of /x  coincides with n (s), s = (1 + it)/(1 - / z )  + �89 By the canonical factorization 
theorem for H 2 functions we have 

{ l + / x o + � 8 9  ~Z~ = g E H2: g(/z) = O((/z -/Zo)"~ So = 1 - tZo 

or, equivalently 

/ 1+ o / 
�9 = ~ + � 8 9  . Z~ = f E L2(0, 1) (,~f)(/z) = O((/z -/Xo)"(So)), So 1 -/Xo 

By (1.4) the relations ( ,~f)(tz)= O(( /z- /Zo)")  and f o f ( x ) x ' - l dx  = O ( ( s -  So)") 

are equivalent for s = (1 + t t ) / (1 - /x )+ �89  The proposition follows. 

Since C 2 is the space generated by {Z~ : 0 < 0 < 1} we easily infer the following 

result. 

COROLLARY 2.2. C: = {f ~ L:(0,  1): f~ f (x )x ' - Idx  = O((s - So) ""0) for all So 

with if(So) = 0, Re So > �89 

COROLLARY 2.3. Let M CL2(0,  1) be a subspace, invariant under V2(t) for 

t >= O, such that M D Z~. Then there exists a nonnegative integer valued function v 

on A ,  such that v(s)<=n(s), s E A , ,  and 

{ 1 } 
M =  f ~ L 2 ( O ,  1): f (x)x ' -~dx = O ( ( s - s o f  (s~ forsoEAo . 

Moreover, for every s in Ao with v ( s )~O,  there exists a nonzero function g, in 
L2@M such that 

V2(t)g, - e x p ( t ( � 8 9  s))g, ~ M, t >O. 

PROOF. As in the preceding proof, ~ M  = m H  2 for some inner function m. 

Since m H  2 D moll 2 = ~Z2o, m must be a divisor of m0 and hence m is a Blaschke 

product with zeros included in the set { p . : s = ( l + t z ) / ( 1 - l z ) + � 8 9  

Moreover,  if v(s) denotes the multiplicity in m of the zero/z  = (2s - 3)/(2s + 1), 

we necessarily have v(s)  <= n(s). The description of the subspace M follows from 

(1.4), as in the preceding proof. 

To prove the last part of the statement, choose s = (1 + / z ) / ( 1 - / x ) + � 8 9  A0 

with v(s) ~ 0 and note that, by a theorem of Moeller [6] (cf. also [8], Ch. III),/x 

is an eigenvalue of the operator S(m)  defined on ~ ( m ) = H Z Q m H  2 by 

S ( m ) f  = P~et,,)Sf, f ~  ~ ( m ) .  Thus there exists fs ~ ~ ( m ) ,  f , ~ 0 ,  for which 
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( S ( m ) - / z ) f ,  = 0 or, equivalently, ( S -  I~)f, ~ m H  ~. This implies that 

S ( t ) - e x p  [ ~ + 1  ~ tla _ l ) ] fs E mH2" 

Indeed, there exists a function h in H~(llh 1[~_-<2/(1-Itz I))such that 

/,~+l\ /~+I) 
exp~t-s  = g(A)(Z - / x ) ,  I A ] < I ,  

so that 

S ( t ) - e x p  ~ttz _ I )] f~ = g" ( S -  p.)f~ E m H  2. 

It suffices now to set o~*[, E L 2 0 . ~ * ( m H  2) = L 2 0 M .  The corollary is proved. 

Observe that Corollary 2.2 implies a corollary similar to Corollary 2.3, with C ~ 

in the place of Z~,. The following result is basic in our restatement of Riemann's 

hypothesis. For 1_<- p =<2 we set B p= {s : if(s) = 0, Re s > 1/p} and 

obviously A ~, = As. 

THEOREM 2.4. 

and 

+ 2 k T r i . k E Z \ { O } } .  
A P = B P U  1 log0 

For l <= p <= 2 and 0 < 0 < 1  we have 

z"on L'-(O, 1) 

{ f } = f E L-" (0, 1): , f (x)x~- 'dx = O((s - so) "%~) for all so E A ~o 

C p f-) L 2 (0, 1) 

{ f } = f E L 2 ( O ,  1): f (x )x  s tdx=O((s - so )"%l )  [ o r a l l s o E B  p . 
) 

PROOF. The proofs of the two identities are similar so that we only prove the 

first one. It is clear that Z~D Z~so that ZPoCl L2(O, 1)D Z~. Moreover,  the space 

ZgC'I L-'(0, 1) is invariant under V(t), t>-_O, so that Corollary 2.3 implies the 

existence of a function v(s)_- < n(s) such that 

{ fo' } Z ;  71 L 2 (0, 1) = f ~ L 2 (0, 1) : f (x)x" 'dx = O ((s - So)"%'), s,, E A,  . 
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We note now that the functions F-'(log t) k, k = 0, 1 , 2 , . . . ,  belong to Lq(0,1) 

(where q = p/(p  - 1) is the conjugate exponent of p) if and only if Re s > 1/p 

(Re s => 1 and k = 0 for p = 1). Since the relation 

f0 (2.1) f ( x  )x ~ ' dx = O((s  - So) "(~')) 

is satisfied for all f in Z~ and so in Ao, and since Z"o coincides with the closure of 

Z2o in L" (0, 1), it follows that (2.1) holds for all f in Zg and so in A g. Therefore, 

we have u(so)-- n(so) for every So in APo. In order to finish the proof we must 

prove that u(s) = 0 for s in Ao \ A Po. Assume that u (s) ~ 0 for some s in Ao \ A Po. 

By Corollary 2.3, we can find a function g,, 

g, E L2(O, 1)@[Z p N L:(O, 1)1 

satisfying the relations 

(2.3) V(t)gs - e x p  [t(�89 s)]gs E Z~ 

for t > 0. This relation implies that 

(2.4) inf{[[ V(t)g~ - f i l e  : f  ~ zg} = e x p [ t ( { - R e s ) l i n f { l l g ~  -f l [~ : f E z " o }  

On the other side, we have 

inf{ll V(t)g,  - f II, : f E Zg} =< inf {l[ V(t)(g,  - h)llp : h E Zg} 

= exp [t(�89 - l/p)] inf {]l g~ - h II, : h e Zg} 

and a comparison of this relation with (2.4) yields exp (�89 - Re s) _-< exp (�89 - 1/p) 

and therefore Re s >= 1/p. Using (2.2) we get Re s = 1/p. Note that the proof is 

finished in case p = 1. Indeed, by the theorem of Hadamard and de la 

Vall6e-Poussin quoted above, there are no zeros s of ~ on the line Re s = 1 and 

the equality v ( s ) =  O, s E Ao \ A ~o, follows for p = 1. We may therefore restrict 

ourselves to the case p > 1. In this case LP(O, 1) is a uniformly convex space (cf. 

[4]) so that we can find a unique h, in g, + Zg satisfying the relation 

IIh, lip = inf{l[g, - f l l .  :f~zg}. 

We observe now that 

exp [t(s - �89 V(t )h ,  = g, + exp [t(s - �89 V(t)g,  - exp It(�89 - s)lg, l 

+ exp [t(s - �89 V(t) (h ,  - g,) 



66 H. BERCOVICI AND C. FOIAS lsr. J. Math. 

so that relation (2.3) and the invariance of Z~ under V(t)  imply that 

exp [t(s - ')] V(t)h~ E gs + ZPo. 

Moreover, by Lemma 1.1, 

]I exp [ t ( s  - ~)l V(t)h~ lip = exp [t(Re s - �89 II V(t)h~ lip 

= exp [t(Re s - ')] exp [t(�89 l/p)] II hs lip 

= II lip 

and the uniqueness of hs in g~ + Z~ implies 

exp[t(s - ' ) ] V ( t ) h ~  = h~ in LP(0, 1). 

But this last identity is only possible when h~ = 0 in L" (0, 1), i.e., when gs E Z~ in 

contradiction with the choice of g~ in L2(0, 1)Q[Z~N L2(0, 1)]. This contradic- 

tion shows that u ( s ) =  0 for s in Ao\APo and thus finishes the proof. 
We are now ready for the main result of this paper. 

THEOREM 2.5. The following assertions are equivalent for 1 <= p <= 2: 

(i) There are no zeros s. of ~ with Re s > 1/p ; 

(ii) C" = L"(0 ,  1); 
(iii) z"on L2(0, 1) = Z~N L2(0, 1) for some 0 with 0 <  0 < 1; 

(iii)' ZPoN L2(0, 1) = Z~N L2(0, 1) for all 0 with 0 <  0 < 1; 
(iv) Z ] =  Z~oN L"(0, 1) for some 0 with 0 <  0 < 1; 
(iv)' Z ~ =  z ~ n  LP(O, 1) for all 0 with 0 <  0 < 1. 

PROOF. The equivalence of (i), (iii) and (iii)' obviously follows from Theorem 

2.4. Theorem 2.4 also implies the equivalence of (i) with the identity 

C p n L2(0, I)--- C ' n  L2(0, 1) = L2(0, 1) 

which is clearly equivalent to (ii) because C" is closed in L p (0, 1). For the 

equivalence between (iii) and (iv) we first note that if (iv) holds then obviously 

z ~ n  L2(0, 1) = [z 'on  LP(0, 1)1 n L2(0, 1) = z ~ n  U(0,  1) 

so that (iii) holds. Conversely, if (iii) holds we can use the fact that Z~ is the 

closure of Z]AL2(0 ,1 )  in L"(0,1) to show that Z~ contains the closure of 

Z~ O L2(0, 1) in LP(0, 1), and this clearly implies (iv). The equivalence of (iii)' and 
(iv)' is proved analogously. The theorem follows. 

Let us note the equivalence of (i) and (ii) constitutes the relevant part of 

Beurling's theorem [2]. 
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3. Another description of Z~ 

For a function f in LP(0, 1), 1 =< p < % and a number s in [0, 1] we denote by f~ 

the function defined by 

f , ( x )  = f ( x / s ) ,  x ~ [0, s], 
=0 ,  x (E (s, 1]. 

It is clear that the closed linear subspace of LP(0, 1) generated by {f~ "0 <= s ~ 1} 

coincides with the closed linear subspace generated by { V(t)f" t >= 0}. It is also 

easy to see that f~ depends continuously (in L p) on s. This is a consequence of 

the density in L" (0, 1) of continuous functions with compact support in [0, 1). 

LEMMA 3.1. For f in LP(0,1), 1-_<p< ~, the closed subspace of LP(O, 1) 

generated by {f~ :0 <- s -<_ 1} coincides with the closure in LP(0, 1) of the set of all 

functions g that can be written as g = f~fMF(s ) for some continuous function F of 

bounded variation on (0, oc) such that F(x) = 0 for x > 1. 

PaOOF, Let us denote by BV the Banach space of all right-continuous 

functions F of bounded variation on (0, + ~) such that F(x) = 0 for x > I, with 

the norm I[ F]]Bv given by the total variation. It is clear that 

If I fsdf(s) <= sup {ll f, lip" II f Ilt~v �9 0 -< s < 1} = ]] f[[p" II F IIBv. 
I p 

Since any function in BV is the limit, in the BV norm, of a sequence of jump 

functions, we infer f~,f, dF(s) belongs to the closed subspace of LP(0,1) 

generated by {f~ : 0 < s  _-< 1}. On the other hand, since the mapping s-+fs is 

continuous, we have 

f0' lim s  fMF,(s) = 0  
r --41 

where F~ is the continuous function which is linear on [ so-  e, so], F,(x) = - 1 on 

[0, so -  e] and F ~ ( x ) = 0  on (So,~). The lemma is proved. 

COROLLARY 3.2. The space Z"o coincides with the closure in L"(O, 1) of all 

functions g of the form g =f~,(po),dF(s) for some continuous function F of 
bounded variation on [0,~) such that F(x)= 0 for x > 1. 

PROOF. It obviously follows from Lemma 3.1 for f - -po .  

COROLLARY 3.3. The space Zfa coincides with the closure in LP(O, 1) of all 

functions g that can be written as 

g(x) = ~ {F(2kx) -  F((2k - 1)x)} 
k = l  
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for some continuous funct ion F o f  bounded variation on [0, ~ )  such that F ( x  ) = 0 

for  x >= l .  

PROOF. It is easy to see that 

pl/2 = --1 ~ X(1/2k, l/(2k-1)]. 
k=l 

The corollary follows since for continuous F the function g = f~ (p,/2)sdF(s) can  

be computed pointwise by the formula 

g(x)  = fo ~ (p,/2)s (x )dF(s)  

= - �89 ~ X./2k.,/(2k-,)j(x/s)dF(s) 

1 ~ f2kx 
= - d F ( s )  

2 k~__ 1 J(2k-l)x 

= - �89 ~1 {F(2kx)  - F((2k - 1)x)}. 

REMARK 3.4. Theorem B from the introduction follows from Corollary 3.3 
1 combined with Theorem 2.5(iv) for 0 = ~. Indeed, the Zorn spaces Z" from the 

introduction coincide with Zf~2. 
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